Determining the Most Valuable Predictive Stats for March Madness

Our Team

Kevin Yin

Harry Li

Class of 2024

Class of 2024

Ned Donovan

Rishi Mandapaka

Class of 2025

Class of 2025

Conclusions

Purpose

Sports fan chase after a perfect March Madness bracket every year. Is there a way to utilize the statistics of the teams to better choose your picks?

which ones are the best predictors for a win?

Every team in the NCAA has an abundance of stats that are tracked. How can we determine

Key Questions

Which statistics are most important in predicting a win? Which teams are underperforming compared to their competitors

Data

Purpose

How well can we predict a win based off team statistics?

Project Goals

- Determine whether a team will win or lose depending on the statistics 01 between the matchup
- 02 Determine which statistics have the largest impact on winning a match

Visualize how the statistics of college basketball teams have changed over time 03

Data Exploration

CBB Dataset Overview

The College Basketball dataset was published on **Kaggle** by Andrew Sundberg in 2021

2	5
R	=
I €	=
<u> </u>	=

Includes both **offensive** and defensive team statistics and advanced metrics

Provides data on all **353** Division 1 collegiate basketball teams each season

MM Dataset Overview

The March Madness dataset was published on **Kaggle** by Woody Gilbertson in 2021

Includes basic game data for both the **winning** and **losing** team in each matchup

Merged Dataset Overview

Both datasets were merged using the **year** and **team name** columns

Includes both game results alongside team statistics for both the winning and losing team

Provides a more **holistic** view of each matchup between two teams

Data Insights

MM Team Average: 0.796

Highest Team Average:

0.959 (Virginia)

Wins

MM Team Average: 24.643

Highest Team Average:

31.714 (Gonzaga)

Adjusted Ratio

- **24.643** MM Team Average: **1.158**
- ige: Highest Team Average:

1.318 (Virginia)

Initial Visualizations

Initial Visualizations

Highest seeds tended to have		-	Selec
more variety in their results		16	R64 516 F4
Both middle seeds surpisingly		15	Cha
demonstrated the exact same	ed	9	
results	R	8	
Lowest seeds displayed expected		2	
results (98% within R64 and R32)		1	
		0.0) (

ction of Seeds - Round Reached Proportion

Seed vs Top 3 Success Metrics

Models

Models

Decision Tree Classifier

Random Forest Classifier

Why?

We are trying to predict a binary winloss based on our 18 performance metric inputs

Logistic Regression

Considers linear relationship of a dependent

variable to one or more independent predictor variables **Decision Tree Classifier**

Makes decisions that relies on conditional control statements, increasing the homogeneity after each split.

Random Forest Classifier

Constructs several decision trees training the model before outputting the most common prediction.

Logistic Regression

Accuracy: 73.9% Precision: 73%

Insight: For every **0.01 power rating difference** between 2 teams, the team with higher power rating's **odds of win increased by 0.08**

0

E.

True Neg 172 36.67%	False Pos 63 13.43%	- 160 - 140 - 120
False Neg 59 12.58%	True Pos 175 37.31%	- 100 - 80
0	1	- 60
Insights	Conclusions	

Tuning hyperparameters (Decision Tree)

	param_max_depth	param_min_samples_leaf	mean_test_score
0	5	10	0.726905
1	2	20	0.724731
2	1	20	0.724731
3	2	60	0.724731
4	2	50	0.724731
5	2	40	0.724731
6	2	30	0.724731
7	1	10	0.724731
8	2	10	0.724731
9	1	50	0.724731
10	1	40	0.724731
11	1	30	0.724731
12	1	60	0.724731
13	20	20	0.720407
14	30	20	0.720407
15	4	30	0.714162
16	3	10	0.711828
17	10	20	0.711805
18	15	20	0.709769
19	25	20	0.709769

Decision Tree

Accuracy Null Accuracy

70.9% > 47.5%

Precision Recall

- 0 66% 79%
- 1 77% 64%

Tuning hyperparameters (Random Forest)

Random Forest

Accuracy Null Accuracy

78.7% > 47.5%

Precision Recall

- 0 74% 85%
- 1 84% 73%

Accuracy

Decision Tree Regression

Random Forest

78.7%

70.9%

Insights

GINI feature importance

Calculated by Gini Feature Importance

Difference Barthag 1

Difference WAB

2

3

Difference ADJOE

Decision Tree

	feature	importance
2	Difference BARTHAG	0.423009
0	Difference ADJOE	0.187965
16	Difference WAB	0.116003
1	Difference ADJDE	0.067764
6	Difference TORD	0.062043
9	Difference FTR	0.052279
11	Difference 2P_O	0.036528
15	Difference ADJ_T	0.029585
13	Difference 3P_O	0.024824
5	Difference TOR	0.000000
7	Difference ORB	0.000000
8	Difference DRB	0.000000
4	Difference EFG_D	0.000000
10	Difference FTRD	0.000000
12	Difference 2P_D	0.000000
14	Difference 3P_D	0.000000
3	Difference EFG_O	0.000000
17	Difference SEED	0.000000

Random Forest

	feature	importance
2	Difference BARTHAG	0.186312
16	Difference WAB	0.100449
0	Difference ADJOE	0.086989
1	Difference ADJDE	0.074226
17	Difference SEED	0.048965
6	Difference TORD	0.048233
8	Difference DRB	0.044696
13	Difference 3P_O	0.043818
9	Difference FTR	0.040268
11	Difference 2P_O	0.039649
15	Difference ADJ_T	0.038781
4	Difference EFG_D	0.038411
7	Difference ORB	0.037941
10	Difference FTRD	0.036579
5	Difference TOR	0.036381
14	Difference 3P_D	0.035812
12	Difference 2P_D	0.033659
3	Difference EFG_O	0.028832

Model Insights

feature in both models.

more important.

2 Forest Model.

Barthag power rating is the most important

Generally, the more advanced metrics (which encompass multiple individual metrics) are

The best performing model was the Random

- From our initial visualizations, we learned that:1. BARTHAG power rating was the best feature to use when it came to probability of winning
- 2. Seed was not a good measurement of the number of wins a team would achieve, hence why upsets can occur
- From our models, we learned that though there were obvious performance metrics that influenced a teams chance to win against another, there was still room for error given the complex factors that influence outcomes of games

Conclusions

Why not more accurate?

Shouldn't a team with better performance metrics overall win?

Our model does not consider:

Potential player injuries or absences

If the teams are playing Home or Away

Play style and strategies favoured by different teams

Next Steps

01 Can we utilize these most useful stats to create a model-generated 2022 March Madness bracket?

02 Can we predict which stats are most important in predicting other sports terms such as "upsets" or "hot streaks"?

O3 Can we apply these results and stats to predicting professional basketball games?

Appendicies